Ядерный синтез. На пути к термоядерной энергетике Кристофер Ллуэллин-Смит (материалы к лекции, прочитанной 17 мая 2009 года в ФИАНе)

Ядерный синтез

Ядерный синтез, являющийся основой существования Солнца и звезд, потенциально представляет собой неистощимый источник энергии для развития Вселенной вообще. Опыты, проводимые в Великобритании в рамках программы Joint European Torus (JET), являющейся одной из ведущих исследовательских программ в мире, показывают, что ядерный синтез может обеспечить не только текущие энергетические потребности человечества (16 ТВт), но и гораздо большее количество энергии.

Энергия ядерного синтеза является совершенно реальной, и основной вопрос состоит в том, сможем ли мы создать достаточно надежные и экономически выгодные термоядерные установки. Для ответа на этот важнейший вопрос я разобью его на части и попробую ответить на более частные вопросы. Что такое реакции ядерного синтеза вообще? Как будет выглядеть установка или станция термоядерного синтеза? В чем состоят сложности создания термоядерных энергетических установок? Почему создание таких установок затянулось на столь долгий срок?

Что такое ядерный синтез?

Процессами ядерного синтеза мы называем реакции слияния легких атомных ядер в более тяжелые с выделением некоторого количества энергии. Прежде всего, среди них следует отметить реакцию между двумя изотопами (дейтерий и тритий) весьма распространенного на Земле водорода, в результате которой образуется гелий и выделяется нейтрон. Реакция может быть записана в виде

D + T → 4He + n + энергия (17,6 MэВ) (1)

Выделенная энергия (возникающая из-за того, что гелий-4 имеет очень сильные ядерные связи) переходит в обычную кинетическую энергию, распределяемую между нейтроном и ядром гелия-4 в пропорции 14,1 MэВ : 3,5 MэВ.3

Для инициирования (зажигания) реакции синтеза (1) необходимо нагреть газ из смеси дейтерия и трития до температуры выше 100 миллионов градусов Цельсия (ниже мы будем миллионов градусов Цельсия обозначать через M°C), что примерно в десять раз выше температуры в центре Солнца. Уже при температуре несколько тысяч градусов межатомные столкновения приводят к выбиванию электронов из атомов, в результате чего формируется смесь из разделенных атомов и электронов, известная под названием плазмы, в которой положительно заряженные и высокоскоростные дейтроны и тритоны (то есть ядра дейтерия и трития) испытывают сильное взаимное отталкивание.

Тем не менее высокая температура (и связанная с этим высокая скорость) заставляют эти ядра сталкиваться друг с другом. При температуре выше 100 M°C наиболее «энергетические» дейтроны и тритоны сближаются при столкновениях на столь близкие расстояния, что между ними начинают действовать мощные ядерные силы, заставляющие их сливаться друг с другом в единое целое.

Осуществление этого процесса в лаборатории связано с тремя очень сложными проблемами. Прежде всего, газовую смесь ядер D и T следует нагреть до температур выше 100 M°C, каким-то образом предотвращая его охлаждение и загрязнение (из-за реакций со стенками сосуда). Для решения этой задачи были придуманы «магнитные бутылки», получившие название «Токамак», которые предотвращают взаимодействие плазмы со стенками реактора. В описываемом методе плазма нагревается электрическим током внутри тора примерно до 3 M°C, что, однако, оказывается еще недостаточным для инициирования реакции. Для дополнительного нагрева плазмы в нее либо «вкачивают» энергию радиочастотным излучением (как в микроволновой печке), либо облучают пучками заряженных или нейтральных частиц с высокой энергией, которые при столкновениях передают свою энергию плазме. Кроме того, выделение тепла происходит за счет собственно термоядерных реакций (как будет рассказно ниже), в результате чего в достаточно большой установке должно происходить «зажигание» плазмы.

В настоящее время во Франции начинается строительство описываемого ниже международного экспериментального термоядерного реактора (International Tokamak Experimental Reactor), который будет первым токамаком, способным «зажечь» плазму.

В наиболее передовых существующих установках типа токамак давно достигнуты температуры порядка 150 M°C, близкие к значениям, требуемым для работы термоядерной станции, однако реактор должен стать первой крупномасштабной энерго установкой, рассчитанной на длительную эксплуатацию. В дальнейшем необходимо будет существенно улучшить параметры ее работы, что потребует, в первую очередь, повышения давления в плазме, так как скорость слияния ядер при заданной температуре пропорциональна квадрату давления. Основная научная проблема при этом связана с тем, что при повышении давления в плазме возникают очень сложные и опасные неустойчивости, то есть нестабильные режимы работы.

Возникающие при реакции синтеза электрически заряженные ядра гелия удерживаются внутри «магнитной бутылки», где постепенно тормозятся за счет столкновений с другими частицами, причем выделяющаяся при столкновениях энергия помогает поддерживать высокую температуру плазменного шнура. Нейтральные (не имеющие электрического заряда) нейтроны покидают систему и передают свою энергию стенкам реактора, а отбираемое от стен тепло и является источником энергии для работы турбин, вырабатывающих электричество. Проблемы и сложности эксплуатации такой установки связаны, прежде всего, с тем, что мощный поток высокоэнергетических нейтронов и выделяющаяся энергия (в виде электромагнитного излучения и частиц плазмы) серьезно воздействуют на реактор и разрушают материалы, из которых он создан. Вторая основная проблема состоит в обеспечении высокой прочности конструкционных материалов реактора при длительной (в течение нескольких лет) бомбардировке нейтронами и под воздействием потока тепла.

Из-за этих проблем конструкция термоядерных установок является очень сложной; третья и, возможно, самая главная проблема состоит в обеспечении высокой надежности их работы. Проектирование и постройка термоядерных станций требуют от физиков и инженеров решения целого ряда разнообразных и очень сложных технологических задач.

Термоядерные электрические станции

На рис. 1 представлена принципиальная схема (без соблюдения масштаба) устройства и принципа работы термоядерной электрические станции. В центральной части располагается тороидальная (в форме бублика) камера объемом ~2000 м3, заполненная тритий-дейтериевой (T–D) плазмой, нагретой до температуры выше 100 M°C. Образующиеся при реакции синтеза (1) нейтроны покидают «магнитную бутылку» и попадают в показанную на рисунке оболочку с толщиной около 1 м.

Внутри оболочки нейтроны сталкиваются с атомами лития, в результате чего происходит реакция с образованием трития:

нейтрон + литий → гелий + тритий (2).

Кроме этого в системе происходят и конкурирующие реакции (без образования трития), а также много реакций с выделением дополнительных нейтронов, которые затем также приводят к образованию трития (при этом выделение дополнительных нейтронов может быть существенно усилено, например, за счет введения в оболочку атомов бериллия и свинца). Общий вывод состоит в том, что в этой установке может (по крайней мере, теоретически) происходить реакция ядерного синтеза, при которой будет образовываться тритий. При этом количество образующегося трития должно не только обеспечивать потребности самой установки, но и быть даже несколько большим, что позволит обеспечивать тритием и новые установки. Именно эта концепция работы должна быть проверена и реализована на описываемом ниже реакторе .

Еще записи на эту же тему:

Метки:


Страницы: 1 2

© 2008-2017 EnergyFuture.RU Профессионально об энергетике. All rights reserved. Перепечатка материалов разрешается при условии установки активной гиперссылки на EnergyFuture.RU.