Торий как лекарство от ядерной чумы

Рос_Атом пытается нас всех убедить, что альтернативы урано-плутониевым А.Э.С нет, просто читаем это:

— природный слабо радиоактивный металл, открытый в 1828 г. шведским химиком Йенсом Берцелиусом, который назвал его в честь Тора, бога войны скандинавских народов. В небольших количествах он присутствует во многих горных породах и грунтах, где его содержание почти в три раза превышает содержание урана. В почве содержится приблизительно шесть частей тория на миллион.

встречается во многих минералах, наиболее распространенным из которых является редкоземельный минерал — фосфат тория — монацит, в котором содержится до 12% оксида тория. Залежи этого минерала имеются в нескольких странах. -232 распадается очень медленно (его период полураспада почти в три раза превышает возраст Земли), но другие изотопы тория содержатся в нем и в цепях распада урана. Большинство из них являются короткоживущими элементами, и поэтому они намного более радиоактивны, чем Th-232, хотя в массовом отношении их содержание ничтожно мало.

Мировые запасы тория (доступные для добычи)
Страна Запасы (в тоннах)
Австралия 300000
Индия 290000
Норвегия 170000
USA 160000
Канада 100000
Южная Африка 35000
Бразилия 16000
Прочие страны 95000
Всего 1200000
(Источник — Служба геологической разведки USA, Запасы минералов, январь 1999 года)

в качестве ядерного топлива

, как и уран, может использоваться в качестве ядерного топлива. Сам по себе не являющийся делящимся материалом Th-232 поглощает медленные нейтроны и образует делящийся уран-233. Как и U-2238, торий-232 является топливным сырьем.

По одному из существенных показателей U-233 превосходит уран-235 и плутоний-239, имея более высокий выход нейтронов на один поглощенный нейтрон. Если начать реакцию с помощью другого делящегося материала (U-235 или Pu-239), можно реализовать цикл наработки делящегося материала, напоминающий, но более эффективный, чем цикл на U-238 и плутоний в реакторах на медленных нейтронах. Th-232 поглощает нейтрон и преобразуется в Th-233, который при распаде переходит в Ра-233, а затем в U-233. Облученное топливо можно выгрузить из реактора, U-233 отделить от тория и загрузить в другой реактор, как часть замкнутого топливного цикла.

За последние 30 лет появился интерес к торию в качестве ядерного топлива, поскольку его запасы в земной коре в три раза превышают запасы урана. Кроме того, в реакторах можно использовать весь добываемый торий в отличие от 0,7% изотопа U-235 из природного урана.

Основным вариантом в реакторах типа PWR могут быть топливные сборки, смонтированные так, что бланкет, состоящий главным образом из тория, покрывает затравочный элемент с большей степенью обогащения, содержащий U-235, который производит нейтроны для подкритического бланкета. Поскольку U-233 производится в бланкете, он там же и сгорает. Здесь речь следует о легководном реакторе-бридере, который успешно прошел демонстрационные испытания в USA в 1970 годах.

Научно-исследовательские и конструкторские разработки

Возможность реализации ториевых топливных циклов изучается уже около 30 лет, однако значительно менее интенсивно, чем урановых или уран-плутониевых циклов. Основные исследовательские и конструкторские работы проводились в Германии, Индии, Японии, Рф, Великобритании и USA. Было проведено также и пробное облучение ториевого топлива в реакторах до получения высокого уровня выгорания. Полностью или частично загружались ториевым топливом несколько опытных реакторов.

К заслуживающим внимания экспериментам по ториевому циклу относятся следующие (первые три проводились на высокотемпературных реакторах с газовым охлаждением):

  • В период с 1967 по 1988 годы в Германии более 750 недель эксплуатировался экспериментальный реактор AVR с насыпным бланкетом при мощности 15 МегаВт. 95% всего периода работы реактора составляла работа на ториевом топливе. Топливо представляло собой 100000 топливных элементов в виде шариков. Общий вес ториевого топлива составлял 1360 кг; торий использовался в смеси с высокообогащенным ураном. Максимальная глубина выгорания составила 150000 МВт·сутки/т.
  • Ториевые ТВЭЛы, состоящие из тория и урана в соотношении 10:1, в течение 741 суток облучались в реакторе Dragon мощностью 20 МегаВт в английском городе Уинфит. Реактор Dragon эксплуатировался в рамках совместного проекта, в котором, наряду с Великобританией, с 1964 по 1973 годы участвовали Австрия, Дания, Швеция, Норвегия и Швейцария. Ториево-урановое топливо использовалось для производства U-233, который заменял потребляемый U-235 примерно в том же соотношении. Топливо могло работать в реакторе в течение шести лет.
  • В 1967-1974 годах в USA работал высокотемпературный реактор Peach Bottom на уран-ториевом топливе мощностью 110 МегаВт производства компании General Atomic.
  • В Индии в 1996 г. в Калпаккаме в качестве источника нейтронов был запущен экспериментальный исследовательский реактор Kamini мощностью 30 кВт, работавший на U-233, полученном путем облучения ThO2 на другом реакторе. Реактор был построен неподалеку от бридерного реактора на быстрых нейтронах мощностью 40 МегаВт, в котором и облучался ThO2.
  • В Нидерландах в течение трех лет эксплуатировался гомогенный реактор с водяной смесью мощностью 1 МегаВт. В реакторе использовалось топливо в виде раствора высокообогащенного урана и тория; с целью удаления продуктов деления непрерывно велась переработка, в результате которой с высоким К.П.Д. производился U-233.
  • Проводился ряд экспериментов с реакторами на быстрых нейтронах.

Энергетические реакторы

  • На базе реактора AVR в Германии был разработан 300 МегаВт-реактор THTR, проработавший с 1983 по 1989 годы; реактор работал на насыпном бланкете из 674000 элементов, из которых больше половины представляло собой уран-ториевое топливо, а остальные — графитовый замедлитель и нейтронные поглотители. ТВЭЛы непрерывно обновлялись при загрузке, и в среднем прошли через реактор шесть раз. Производство топлива было поставлено на промышленную основу.
  • Реактор Fort St Vrain был единственным в USA коммерческим реактором, работавшем на ториевом топливе; этот реактор также был сконструирован на базе немецкого AVR и проработал с 1976 по 1989 годы. Это был высокотемпературный реактор (1300°С) с графитовым замедлителем и гелиевым охлаждением с проектной мощностью 842 МегаВт (330 МегаВт электрических). Топливные элементы были изготовлены из карбида тория и карбида Th/U-235 в виде микросфер, для удержания продуктов деления, покрытых диоксидом кремния и пироуглеродом. ТВЭЛы имели форму шестигранных колонн («призм»). В реакторе использовалось почти 25 тонн тория; глубина выгорания составила 170000 МВт·сутки/т.
  • Исследования ториевого топлива для реакторов типа PWR проводились на американском реакторе Shippingport; в качестве исходного делящегося материала топлива использовались U-235 и плутоний. Был сделан вывод, что торий серьезно не повлияет на режимы работы и сроки эксплуатации активной зоны. Здесь же с 1977 по 1982 годы успешно прошли испытания легководного бридерного реактора затравочно-бланкетного типа на ториево-урановом топливе, покрытым сплавом циркония.
  • В 60-мегаваттном реакторе Lingen типа BWR в Германии использовались Th/Pu-ТВЭЛы.

Индия

Еще записи на эту же тему:



Страницы: 1 2

Оставить комментарий (Зарегистрируйтесь и пишите коментарии без CAPTCHи !)

 
© 2008-2017 EnergyFuture.RU Профессионально об энергетике. All rights reserved. Перепечатка материалов разрешается при условии установки активной гиперссылки на EnergyFuture.RU.