ИЗВЛЕЧЕНИЕ ПРОМЫШЛЕННЫХ КОМПОНЕНТОВ ИЗ ПОПУТНЫХ НЕФТЯНЫХ ВОД.

А.Н. Воронов, А.В. Тудвачев

Геологический факультет СПбГУ

199034, г. Санкт-Петербург, Университетская наб. д.7/9, arkad@av3011.spb.edutudvachev@dhspb.ru.

Вместе с нефтью на нефтяных промыслах извлекается огромное количество подземной воды. Чем дольше длится эксплуатация месторождения, тем большее количество воды поднимается на поверхность. В некоторых случаях количество извлекаемой воды достигает 90%. Наивысшее количество воды фиксируется при полном обводнении скважин. Так как извлекаемые компоненты используются, главным образом, в промышленности, они получили не совсем удачное название «промышленные».

Поскольку эти воды извлекаются с большой глубины, они обладают значительной минерализацией и высоким содержанием ряда ценных компонентов, в большинстве своем относящихся к разряду микрокомпонентов.

Конечно, интересы нефтяников и гидрогеологов – промысловиков прямо противоположны. Однако, они легко могут быть объединены, если учесть цена получаемого гидроминерального сырья, цена которого в оптимальных случаях может достигать или даже превышать цена нефтяных углеводородов.

Вопрос извлечения микроэлементов из попутных нефтяных вод необходимо рассматривать с экономической точки зрения. Для организации производства по извлечению промышленно ценных компонентов из попутных нефтяных вод нужно учитывать следующие моменты:

1.   Значения концентраций потенциально извлекаемых компонентов в водах.

2.   Общий расход (объем) попутных вод поступающий с площади месторождения за единицу времени.

3.   Эффективность технологии извлечения компонентов.

4.   Спрос и цены на мировых и внутренних рынках на перспективное сырье.

Наибольшие концентрации в нефтяных водах наблюдаются для брома. Количество брома в рассолах достигает 6-7 г/л. При содержании брома более 250 мг/л добыча брома становится рентабельной. В зоне распространения хлор – кальциевых вод отмечается рост содержания брома с увеличением минерализации и метаморфизации вод. Бром отличается высокой растворимостью в воде. Соли брома (бромиды) способны на 95% растворяться в воде. Основное количество брома накапливается в морских и океанических водах (содержание брома в морской воде составляет порядка 65 г/л). В процессе галогенеза бром постепенно накапливается в рассолах по мере увеличения минерализации. Бром поступает в подземные воды за счет растворения галогенных пород.

Бромные воды и рассолы имеют широкое распространение в нефтегазоносных бассейнах. Они развиты на большей части Восточно-Европейской и Сибирской платформ. В Северо-Двинском бассейне в отложениях палеозоя бромные рассолы с минерализацией до 190 г/л содержат 375-900 мг/л брома. На юге Тиммана, в Печорском бассейне в отложениях кембрия – палеогена скважинами вскрыты рассолы с минерализацией от 50 до 235 г/л и содержанием брома до 800 мг/л (Нижняя Омра, Северная Сылва).

В Припятском прогибе в ультракрепких рассолах содержание брома достигает 3,6 г/л.

В Поволжье бромные воды и рассолы распространены почти повсеместно. В Пермской области вплоть до восточной границы Предуральского прогиба ультракрепкие бромные рассолы распространены ниже ангидритовых пермских отложений и содержат до 1,8 г/л брома (Краснокамск).

В пределах Сибирской платформы  в глубоких горизонтах Конского, Среднеангарского, Ленско-Вилюйского бассейнов на глубине 2-3 км развиты ультракрепкие рассолы с содержанием брома до 7 г/л. В Иркутском бассейне в рассолах карбоновых отложений мотской свиты, на месторождениях Братское, Среднеботубинское в водах с минерализацией 290-450 г/л содержание брома составляет 5-6 г/л.

Не исключено, что новые месторождения, обнаруженные в акваториальной части древних платформ, также будут содержать кондиционные концентрации брома.

В Рф около 70% брома добывают из подземных вод. Остальные 30% получают из рапы озер и морских заливов и отходов калийного производства. Добывают бром из рассолов Краснокамского в Пермской области. Используются воды хлоридного – кальциевого –  натриевого состава.

По добыче брома Россия находится на 4 месте уступая USA, Англии, Германии и Израилю. Мировое производство брома оценивается порядка 550 тыс. тонн в г., цена на бром составляет около 1 тыс. долл. за тонну. Россия импортирует бром из USA и Израиля в объема 20-25 тыс. тонн в г..

Другим распространенным галогеном, получаемым из подземных вод, является йод. Йод не концентрируется в горных породах, сырьем для его получения служит гидросфера и водная растительность. Йод содержится в водах с невысокой минерализацией. Накопление йода в воде ассоциируется с повышенным содержанием органических веществ. Главные концентраторы йода – морские растения и организмы. В составе растений преобладают минеральные формы йода – йодиты. Так как водорослевый материал отлагается на участках опресненной морской воды, то йод, прежде всего, связан с седиментационными водами пониженной минерализации. Для вод  нефтяных месторождений характерны высокие концентрации йода. Взаимодействие пород с подземными водами происходит с участием органического вещества, которое регулирует концентрацию и форму миграции йода в подземных водах. В минерализованных водах переходу йода из пород способствует щелочная среда, восстановительная обстановка и температура.

По составу йодные воды являются хлоридно-гидрокарбонатными или гидрокарбонатно-хлоридными натриевыми.

В распространении и содержании йода в подземных водах проявляется определенная зависимость от возраста водовмещающих пород. Так, в бассейнах областей мезозой- кайнозойской складчатости среднее содержание йода в подземных водах составляет 36,3 мг/л, а водах палеозойской складчатости 12,5 мг/л.

В неокомском комплексе центральной зоны Западно-Сибирского мегабассейна воды имеют минерализацию 11 – 27 г/л, а содержание йода составляет 18-34 мг/л.

На первом месте по производству йода в мире находится Япония, Россия находится на 3 месте. Цена за тонну йода составляет около 33 тыс. долларов.

Стронций традиционно извлекается из обогащенных стронцием минералов. Однако, 24% мировых запасов стронция находится в подземных водах. В настоящее время имеются технологии извлечения стронция из подземных вод.

В юрских отложениях Западно-Сибирского мегабассейна на месторождениях  Ямало –Ненецкого автономного округа — Фестивальном и Харампурском воды хлоридно-кальциевые и имеют минерализацию 18,5-19 г/л, содержание стронция составляет 79-163 мг/л (0,6%), что ниже установленных в нашей стране кондиций (300 мг/л). Цена стронция на мировом рынке составляет 1200 – 1500 долл. за тонну. Поэтому, даже большие запасы вод нефтяных месторождений северной части Западной Сибири не оправдают затрат на его производство. Однако, потребности в стронции в нашей стране удовлетворяются, в основном, за счет импорта, а также переработки апатитового концентрата, где карбонат стронция составляет 2,4%.

До 63% мировых запасов лития содержится в подземных водах. Около 30% производится из подземных и поверхностных вод. Наиболее передовые технологии извлечения лития развиты в USA. В штатах Мичиган и Оклахома нефтяные воды содержат до 3 г/л лития.

В Рф принята кондиция для лития в 10 мг/л. По состоянию на начало 2008 г., цена за тонну лития составила 6,3 тыс. долларов. Таким образом, извлечение лития из нефтяных вод месторождений Ямало-Ненецкого округа при использовании современных технологий может оказаться рентабельным, учитывая большие запасы вод.

Интересно рассмотреть возможность извлечения некоторых редких элементов из нефтяных вод Ямало – Ненецкого автономного округа. Вопрос извлечения скандия, цезия и германия носит сложный характер.

Содержание скандия в нефтяных водах составляет до 0,012 мг/л. Кондиционное содержание для скандия не установлено, но известно что скандий добывается из попутных бокситовых и урановых руд с содержанием от 0,00001% до 0,002%. Содержание скандия в морской воде составляет 4х10-5 мг/л. Цена на скандий доходит до 206 тыс. долл. за килограмм.

Еще записи на эту же тему:



Страницы: 1 2

Оставить комментарий (Зарегистрируйтесь и пишите коментарии без CAPTCHи !)

 
© 2008-2017 EnergyFuture.RU Профессионально об энергетике. All rights reserved. Перепечатка материалов разрешается при условии установки активной гиперссылки на EnergyFuture.RU.